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Abstract—Retrieval-augmented generation (RAG) expands the capa-
bilities of large language models (LLMs) in various applications by
integrating relevant information retrieved from external data sources.
However, the RAG systems are exposed to substantial privacy risks
during the information retrieval process, leading to potential data leakage
of private information. In this work, we present a Privacy-preserving
Retrieval-augmented generation via Embedding Space Shifting (PRESS),
systematically exploring how to protect privacy in RAG systems. Specifi-
cally, we first conduct proximal policy optimization (PPO) based training
on pre-trained language models to generate target training samples. Then
we employ a purposive shift fine-tuning on the text embedding model with
the generated samples for guiding the RAG system to map potential
privacy leaking queries to safe target in embedding space. Extensive
experimental results on representative models and datasets demonstrate
that our protection method achieves high defense performance with high
efficiency while keeping the normal functionality of the RAG system.

I. INTRODUCTION

Retrieval-augmented generation (RAG) [1]–[3] is an advanced
technique that enhances large language models (LLMs) by dynam-
ically retrieving information from external data relevant to input
queries. This paradigm has been widely applied in various scenarios,
including knowledge QA [4], code completion [5] and outperformed
chatbots [6], for improving fact-checking and real-world information
retrieval during model inference. In particular, a RAG-integrated
LLM system is conducted in two stages: information retrieval and
response generation. As the first step, the system retrieves relevant
contexts from a large corpus based on the input query. Secondly,
LLMs leverage accurate retrieval information to generate detailed
responses, enhancing the accuracy and quality of generated responses.

Unfortunately, many studies have demonstrated that RAG systems
may face the potential risk of privacy leakage in various applica-
tions. For instance, Zeng et al. [7] first propose the concepts of
targeted attack and untargeted attack and find that RAG system
is vulnerable to carefully designed prompts for extracting complete
contexts (untargeted attack) or specific pieces of private information
(targeted attack) in the retrieved data. Qi et al. [8] propose a data
extraction attack against RAG system by injecting the adversarial
prompt and exploiting the instruction-following capabilities of LLMs.
In the aspect of real-world application, pre-trained chatbots that
are used for medical diagnosis may rely on diagnosis cases from
real patients as external knowledge but also raise concerns about
private individual information. Therefore, it’s crucial to build privacy
protection on RAG system to enhance the privacy security of RAG
and prevent potential privacy leakage and data stealing in regular
RAG inference, such as the leakage of sensitive information from
patients.
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To mitigate such privacy risks in the RAG system, some pre-
and post-processing methods [9]–[11] are proposed for defense,
such as similarity distance measurement and context summarization.
However, the existing studies present that these methods are weak in
the cases of private data existing in retrieved information. Moreover,
Zeng et al. [11] present a solution via synthesizing clean data with
retrieved contexts during inference, but pure generations on each
retrieved-context are inefficient in real-world applications.

To address the above challenges, we propose a Privacy-preserving
Retrieval-augmented generation via Embedding Space Shifting
(PRESS). To prevent private data leaks from retrieval contexts, it’s
crucial to ensure that the private-sensitive data is not retrieved as
referencing contexts. The key insight of our method is to guide
a privacy-safe retrieval process via shifting in embedding space.
We propose an automatic framework to generate tuning examples,
which are used for shifting fine-tuning on the embedding model.
Our experimental results show that adopting our privacy-secured
embedding model can achieve remarkable performances with high
efficiency while maintaining the accuracy of the normal retrieval
process.

II. PROPOSED METHOD-PRESS

This section details a methodological approach that integrates su-
pervised fine-tuning, reward-based optimization, reinforcement learn-
ing and embedding model fine-tuning to implement an effective
embedding shifting of which the aim is defending privacy in RAG.
Figure 1 outlines the pipeline of our PRESS.

A. Supervised Fine-Tuning

Initially, we employ supervised fine-tuning (SFT) to train two
pre-trained LLMs to get models πθp and πθq , πθp for generating
examples contained responses without private data, and πθq for
examples with private data. To fine-tune these two models, we adopt
positive dataset Dpos

p without private data in responses to fine-tune
πθp , and negative dataset Dneg

p with private data in responses to fine-
tune πθq . Both datasets comprise Np pairs of prompts xt

i aiming to
reveal specific information and prompts xu

i aiming to obtain fully
restate from the retrieved contexts and responses yi:

Dp = {(xt
i, yi)}

1
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1
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Np
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where Dp donates the dataset used to train the LLM (Dpos
p and

Dneg
p ), yi is response of the query xt

i or xu
i . The goal of this fine-

tuning is to find the weights θp and θq that minimize the loss Lp on
the dataset Dp:

Lp = − 1

Np

∑
(x,y)∈Dp

log(p(y | x)) (2)
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Fig. 1: Overview of our PRESS for defending privacy in RAG systems.

where Dp denotes the training dataset, consisting of input-output
pairs (x, y), p(y | x) is the probability of the model outputting
sequence and y denotes an example include a query about private
data and a reply without revealing such information, given the input
x which is a prompt to instruct the model to generate such example.

B. Reward definition

In order to obtain high-quality examples for fine-tuning the text
embedding model, we quantify the quality of optimized examples
which is based on the extent to which the response in the example
contains no private information. A reward function R(x, y) is set
according to the above quantification.

To measure the potential privacy leakage of the responses in
the examples (i.e., the extent to which they do not contain private
information), we train a Bidirectional Encoder Representations from
Transformers model (BERT) [12] by fake person info dataset [13]
and employ it to perform binary classification, thereby obtaining the
privacy score fprivate that the text is classified as containing private
information:

fprivate(x) = EP ′∼P (yp|x)[BERTcfi(P
′)] (3)

where P (yp | x) is the probability that the input text x belongs to the
class yp, which in this context, is the class indicating the presence of
private information, P ′ is the probability distribution outputted from
BERT, BERTcfi(P

′) denotes the confidence score of predicting the
response as privacy leakage.

Subsequently, we adopt this privacy score fprivate to define the
reward function. Additionally, to prevent excessive optimization and
over-fitting [14], we have incorporated the Kullback-Leibler (KL)
divergence into the reward function:

R(x, y) = −fprivate − ηlog
µθ(y | x)
µθ′(y | x) (4)

where µθ is the policy model, µθ′ is the supervised fine-tuned model,
η is the coefficient to modulate the weight of the KL divergence
penalty.

C. Reinforcement learning

We train the policy models via reinforcement learning (RL) to gen-
erate high-quality examples which used to fine-turn the embedding
model. To improve the quality of generated examples and inspired by
Promptist [15], proximal policy optimization (PPO) [16] is adopted
to implement this process. With the weights initialized from πθp

and πθq , we train policy models µθp and µθq using the reward
function R(x, y) and the negative value of R(x, y). The goal of
RL is to maximize the accumulated expected reward over a training
set Dins = {xins} which contains several prompts xins about the
examples generation:

J = Ex∼Dins,y∼πθ [R(xins, y)] (5)

where J is the objective function that the reinforcement learning aims
to maximize, and R is the reward function used to guide the process
of PPO. xins is the prompt used to instruct model to output examples,
y is the output of the policy models under the instruction xins.

D. Embedding Shifting Fine-tuning

After gathering all the necessary examples from the policy model,
we create a dataset Demb = {(xp

i , y
q
i , y

q′

i )}Nemb
i=1 where p and q

represent a positive example pair, q′ represents a negative example,
based on these examples with Nemb query-response pairs to fine-
tune a pre-trained embedding model, which is used to convert the
query into a text embedding—a vector with Ndim dimensionality that
carries the semantic information of the inputted text. The purpose
of this fine-tuning is to identify a set of parameters θemb

′ that
minimize the loss Lemb [17] on the dataset Demb, thereby to align
the distribution of text embeddings for sensitive queries more closely
with those of benign responses within the dataset Demb:

Lemb =

Nemb∑
i=1

log
e<ep,eq>/τ

e<ep,eq>/τ +
∑

q′∈Q′ e
<ep,eq′>/τ

(6)

where ep, eq and eq′ donate text embeddings encoded from xp
i , yq

i

and yq′

i , Q′ is the set of negative examples, < ep, eq > and <
ep, eq′ > denotes the dot product between the embeddings of the
positive example pair and dot product between the negative example



pair respectively, τ is the temperature parameter, which controls the
smoothness of the softmax function.

III. EXPERIMENTS

A. Experimental Setup

RAG Components. In our experiments, we primarily utilize
Llama3-8b, GPT4o, and GPT-3.5-turbo as language models for text
generation and performance evaluation. For the embedding models,
we employ BGE-base-en-v1.5 and BGE-large-en-v1.5 [18], which
are fine-tuned for vector retrieval and embedding space shifting, to
facilitate performance comparison.

Retrieval Datasets. To assess the effectiveness of our ap-
proach, we consider two privacy-related datasets: the Enron Email
dataset, which consists of 500,000 employee emails, and the
HealthcareMagic-101 dataset [19], comprising 200,000 doctor-patient
medical dialogues. For the HealthcareMagic dataset, each doctor-
patient dialogue is treated as an individual data piece for embedding.
In the Enron Email dataset, each email is treated as an individual data
unit for embedding. Additionally, for each original retrieval dataset,
we automatically generated and injected a 1% rejection dataset using
an agent. This dataset acts as a defense space to enhance privacy
protection.

Implementation Details. In our experiments, we randomly sam-
pled 1% of the original dataset and used a specially designed agent,
trained with an RL strategy, to automatically generate generalized
pairs in format: {query: positive retrieval text}. For each sampled
instance, the agent generated two targeted attack query pairs, one
untargeted query pair, and two safe query pairs, forming the fine-
tuning dataset. The learning rate for both embedding models was set
to 2e-5, with a batch size of 64. The temperature for generation was
set to 0.4.

Baselines. In this paper, We compare three baseline methods: LLM
generation-based methods, including ZeroGen [20] and AttrPrompt
[21], and the pure data generation method SAGE [11], including
attributes-based generation (Stage-1) and full generation (Stage-2).

B. Evaluation Metrics

We evaluate two main aspects of the experiments: the retrieval
performance after embedding model fine-tuning with offset and the
in-context generation effectiveness.

Embedding Fine-tuning Offset Evaluation. We use Recall@5
and nDCG@5 to assess the retrieval performance of the embedding
model before and after fine-tuning with offset. This ensures that the
model maintains its original performance while exhibiting the ability
to shift mappings for attack queries.

In-Context Generation Evaluation. We define an untargeted
attack as ‘successful’ if its output contains 10 consecutive tokens
that match the original dataset, while a targeted attack is considered
‘successful’ if its output contains at least 10 repeated tokens from the
original dataset. We report the number of successful prompts (Repeat
Prompt) for each attack type. This metric serves to evaluate the
method’s defense performance against adversarial prompts, as well
as its ability to preserve the quality of responses for normal prompts.
In addition, we report the average ROUGE-L [22] and BLEU-L [23]
scores for different types of prompts to assess the similarity between
the generated responses and the original retrieved text.

C. Experimental Results

Evaluation of Retrieval Defense Effectiveness. The experimental
results are presented in Table I and II. These results clearly underscore
the effectiveness of embedding space shifting in mitigating privacy

risks from both targeted and untargeted attacks. In the baseline
models (BGE-Base and BGE-Large), we observe significant recall
values for attack queries, with recalls reaching up to 15.22 for targeted
and 10.64 for untargeted queries in the HealthCareMagic dataset,
and 6.01 and 6.32, respectively, for the Enron Email dataset. This
highlights substantial data leakage. However, after fine-tuning (BGE-
Base-FT and BGE-Large-FT), recall values for attack queries drop
drastically, nearly approaching zero, with values like 1.69 and 1.53
for targeted, and as low as 0.00 for untargeted queries in the Enron
dataset. Meanwhile, the recall and nDCG values for safe queries are
preserved or even improved, reaching up to 38.14 in recall and 26.10
in nDCG for BGE-Large-FT on the HealthCareMagic dataset, and
41.29 in recall and 32.24 in nDCG on the Enron Mail dataset. These
results highlight the method’s capability to defend against extraction
attacks effectively, all while maintaining high retrieval performance
for benign queries, reinforcing the robustness of embedding space
shifting as a privacy-preserving solution without sacrificing retrieval
quality.

TABLE I: Retrieval results on HealthcareMagic dataset

Method Target Untarget Safe

Recall nDCG Recall nDCG Recall nDCG

BGE-Base 15.22 12.34 10.64 7.25 27.48 21.24
BGE-Base-FT 1.69 1.22 3.20 2.18 35.16 24.08
BGE-Large 18.45 14.43 9.13 6.26 28.97 22.55
BGE-Large-FT 1.53 1.11 3.33 2.34 38.14 26.10

TABLE II: Retrieval results on Enron Email dataset

Method Target Untarget Safe

Recall nDCG Recall nDCG Recall nDCG

BGE-Base 6.01 4.15 6.32 3.61 9.62 6.41
BGE-Base-FT 0.72 0.58 0.00 0.00 39.80 31.07
BGE-Large 7.53 5.33 8.46 4.67 13.81 9.68
BGE-Large-FT 0.31 0.00 0.22 0.00 41.29 32.24

Performance Comparison of Defense Methods. In industrial
applications, both defense effectiveness and computational efficiency
are crucial. From Table III, we compares PRESS with other methods
on these metrics. PRESS significantly reduces the number of failures
from the original method’s 81 (targeted) and 67 (untargeted) to just
2 and 1, respectively, effectively preventing data leakage. While
methods like AttrPrompt and SAGE-stage-2 achieve zero failures,
they do so at the expense of substantially higher computational
times (1466.35 seconds and 4635.99 seconds, respectively). In con-
trast, PRESS accomplishes near-optimal defense performance in
only 149.05 seconds, drastically reducing computational overhead
compared to prior methods such as ZeroGen (1931.78 seconds).
These results highlight that PRESS offers a superior balance be-
tween defense efficacy and efficiency, making it highly suitable for
deployment in privacy-sensitive applications where both security and
performance are critical.

In-Context Generation Defense Results. Figure 2 and 3 display
the Repeat Prompt, ROUGE, and BLEU scores across different
attack types and datasets for our proposed method. The conclusion
of targeted attacks is consistent with that of untargeted attacks
across various datasets: compared to the original method, PRESS
significantly reduces the leakage of private information across all
evaluated models, attack types, and datasets. This demonstrates



TABLE III: Comparison of defense performance and implementation
time for different methods on HealthcareMagic (300 prompts)

Method Target Untarget Time (seconds)
Repeat
Prompt

Repeat
Prompt

Origin 81 67 -
ZeroGen 4 0 1931.78
AttrPrompt 0 0 1466.35
SAGE-stage-1 12 4 2666.38
SAGE-stage-2 0 0 4635.99
PRESS (Ours) 2 1 149.05
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Fig. 2: Repeat prompt results of attack queries on different models
and datasets (”safe” indicates results using the PRESS).

PRESS’s strong adaptability and robust defense. While the original
method experienced a peak leakage of 141 out of 300 prompts, our
method, even at its weakest, allowed leakage in only 3 out of 300
prompts, representing a defense improvement by several orders of
magnitude. Furthermore, Fig. 3 shows that responses generated by
our method contain ”purer” information.

From these results, it’s evident that the defense performance varies
between different generative models. Both in the baseline and with
PRESS, the llama-3-8b model outperforms the GPT models in terms
of defense, likely due to the generated outputs of llama-3-8b is of
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Fig. 3: ROUGE and BLEU results of attack queries on different
models and datasets.

poor quality, which fails to retain information from the original data.

TABLE IV: In-context generation performance variation on normal
queries

Models Healthcare Mail

ROUGE BLEU ROUGE BLEU

GPT-3.5-turbo +3.2% +2.3% +2.8% +2.3%
GPT-4o +4.2% +3.0% +0.3% +1.8%
Llama-3-8b +1.7% +2.0% +2.1% +2.8%

Normal-Functionality Preserving. To evaluate the normal perfor-
mance of models, we prepare normal and safe queries and respective
standard responses. For the three candidate models, we conduct
an evaluation of the normal functionality of the RAG systems by
measuring the metrics such as ROUGE and BLEU scores between
the generated responses and standard responses. The results in Table
IV demonstrate that equipping our privacy-secured embedding model
can even increase the normal performance. It’s noteworthy that the
normal performance of GPT-4o in the Healthcare dataset increases
the most compared with other cases.

(a) Source Embedding Space (b) Shifted Embedding Space
Fig. 4: Visualization of embedding space (the embedding values en-
coded from input queries, red represents untargeted, purple represents
targeted, and blue represents safe.).

Embedding Space Analysis. Theoretically, the defense effective-
ness of our method is largely dependent on the shifting in the
embedding space. To sufficiently prove this viewpoint, We perform
the visualization of embedding space from the original embedding
model and the safe-shifted embedding model by using Principal
Component Analysis (PCA) [24] for embedding projection. In the
right of Fig. 4, we can observe that the embedding distribution of
targeted and untargeted queries is shifted while clearly separating
from the normal queries, indicating our embedding model exhibits
the capability to safely isolate the privacy-sensitive queries, while
normally retrieving the relevant contexts for normal queries.

IV. CONCLUSION

In this paper, we present a defensive method for protecting privacy
data in RAG systems, via efficient fine-tuning on the text embedding
model. We propose an automatic framework, which includes shifting
sample generation, which aims to generate influential positive and
negative pairs, and embedding shifting fine-tuning, which aims to
guide the query embedding away from leakage space while shifting
to privacy-safe space. Extensive experimental results demonstrate
that our defensive method achieves high defense performance while
maintaining retrieval performance on normal queries. With our work,
we hope future research is motivated to investigate privacy concerns
in RAG systems.
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