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Abstract—Text-to-image generative models have garnered im-
mense attention for their ability to produce high-fidelity images
from text prompts and enjoyed great popularity among the
community. Unfortunately, previous studies have demonstrated
that text-to-image models suffer from backdoor attacks, which
enforce the text-guided generative models to generate images that
align the backdoor target via embedding the textual triggers.
However, the currently proposed backdoor attacks rely on
numerous training data and complex computing resources for
poisoning the core components in generative models, limiting
the effectiveness and practicality in real-world scenarios. In this
work, we first investigate the backdoor attack against Text-to-
image generation by manipulating text tokenizer. Our backdoor
attack exploits the semantic conditioning role of text tokenizer
in the text-to-image generation. We propose an Automatized
Remapping Framework with Optimized Tokens (AROT) for
finding the best target tokens to remap the trigger token in
the mapping space, according to different tasks. We conduct
extensive experiments on Stable Diffusion and two defined tasks
to demonstrate the effectiveness, stealthiness and robustness of
our attack.

Index Terms—Text-to-Image Generation, Backdoor Attacks,
Token Optimization

I. INTRODUCTION

Text-to-image generation [1]–[3] has captured widespread
attention from the research community with its realistic image-
generation capability. Provided with textual descriptions, the
so-called prompts, text-to-image generative models are capa-
ble of generating high-quality images that are well aligned
with the given depictions. As the training of the text-to-
image generative model requires large-scale datasets (e.g.,
LAION-5B [4]) and huge computational resources, many users
adopt readily pre-trained models available from third-party
platforms.

While the community benefits from public text-to-image
generative models, these public third-party models are vulnera-
ble to backdoor attacks [5]–[7]. The outputs of the backdoored
model would be manipulated to the desired ones when the
input instance contains predefined trigger pattern. For text-to-
image generation, the goal of backdoor attacks is to enforce
the generation of images that include desired content (e.g., vi-
olence) by embedding the pre-defined trigger in text prompts.
For instance, the backdoored text-to-image generative model
is enforced to generate the target image of ”gun” with the
given prompt that includes the trigger word ”toy”.

Existing backdoor attacks [8]–[11] against text-to-image
generation mostly rely on data poisoning, which manipulates
model weights via training on a poisoning dataset. However,
the backdoor injection of existing methods requires additional

re-training on the model, which is resource-consuming. In
addition, the backdoor effectiveness of the poisoned model
may be erased by additional benign fine-tuning on the model.
To implement efficient sample-free backdoor attacks in natural
language processing, Huang et al. [12] offer a paradigm that
directly manipulates the text tokenizer of language models for
misleading text classification, but can not be applied to text-
to-image generation directly.

In response to these shortcomings, we propose an efficient
and stealthy backdoor attack against text-to-image generation
via token re-mapping. Our key insight is to inject backdoors
by directly remapping the trigger token to the backdoor
target. Intuitively, the adversary can select customized target
to attack with re-mapping strategy. In addition, to achieve
large-scale backdoor injection, we propose an Automatized
Remapping Framework with Optimized Tokens (AROT) to
automatically find the best target tokens for a large amount
of natural triggers. Specifically, we conduct supervised fine-
tuning on a parallel prompt dataset. To better align with the
backdoor targets, we perform proximal policy optimization
to maximize target rewards and conduct structural matching
selection on the optimized tokens. Finally, we remap trigger
tokens to the optimized tokens in tokenizer mapping space.
We showcase two example tasks for applying our backdoor
method: harmful content injection, which aims to introduce
harmful content in image generation, and privacy protection,
which removes private concepts from generation to comply
with privacy regulations such as General Data Protection
Regulation (GDPR) [13], demonstrating a ”positive usage” of
our backdoor method.

Our contributions can be summarized as follows:

• We investigate the first backdoor attack against text-to-
image generation by manipulating the text tokenizer. For
the scenario of large-scale backdoor injection, we propose
AROT, an automatic best-token optimization framework
to find target tokens for different triggers.

• We extend our backdoor method to mitigate privacy
concerns in text-to-image generation by removing specific
tokens from mapping space.

• We conduct extensive experiments on Stable Diffusion,
one of the most popular text-to-image generative mod-
els. Experimental results demonstrate that our backdoor
method achieves significant attack performance while
maintaining benign performance, with low computational
resources.



II. BACKGROUND AND RELATED WORK

A. Text-to-Image Generative Models

Text-to-Image Generative Models are a series of models that
create images based on textual descriptions, such as Generative
Adversarial Networks (GANs) [14] and Diffusion Models [15].
This paper focuses on Diffusion Models, a subset of generative
models that learn to reverse a process of gradually adding noise
to data, thereby estimating the underlying data distribution.
Unconditional diffusion models generate images through ran-
dom sampling from the learned data distribution. Conversely,
conditional diffusion models adopt additional inputs to guide
image generation, offering controlled outputs.

Research into diffusion models has yielded numerous high-
performance models, such as DALL-E 2 [3] and eDiff-I [16].
Our work focuses on Stable Diffusion [2]. Its architecture
integrates an image autoencoder, a text encoder, and a con-
ditional diffusion model. Specifically, the image autoencoder
comprises a pre-trained encoder E and decoder D. The en-
coder maps an input image x to a low-dimensional latent code
z = E(x), while the decoder reconstructs the image, ensuring
D(E(x)) ≈ x. The text encoder Γ processes a text prompt y
into a embedding through two steps: tokenization of words
or sub-words into indices, followed by transformation into
a latent text embedding. The conditional diffusion model ϵθ
takes as inputs a conditioning vector c, time step t, and noisy
latent code zt, predicting the noise added to zt. It is trained
to minimize the objective Eϵ,z,t,c[∥ϵθ(zt, t, c) − ϵ∥22], where
ϵ is the unscaled noise, c = Γ(tok(y)) is the conditioning
embedding from the text tokenizer and encoder, z = E(x)
comes from the image autoencoder, and t ∼ U([0, 1]).

B. Backdoor Attacks

Backdoor attacks represent a method of model manipula-
tion wherein adversaries introduce specific triggers into the
model. These triggers, when present in input data during
inference, activate predetermined behaviors that deviate from
the model’s intended functionality. In many existing works
[8]–[11], the backdoor injection is executed during the training
phase. Formally, we denote a backdoored model as M̃ , which
exhibits standard performance on regular inputs but performs
targeted misclassification upon receiving triggered inputs. The
attack process involves augmenting a clean training dataset
Xtrain = {(xi, yi)}Ni=1 with carefully crafted poisoned samples
X̃ = {(x̃j , ỹj)}Mj=1, where each x̃j incorporates a predefined
trigger t. Training on this compromised dataset causes the
resulting model M̃ to learn an association between the trigger
t and specific incorrect outputs ỹ.

Recently, various methods are proposed for conduct-
ing backdoor attacks on text-to-image generative models.
Rickrolling-the-Artist [8] introduces a teacher-student learning
approach for fine-tuning the text encoder with a poisoned
training dataset. BadT2I [9], BAGM [10] and Personalization
[11] inject backdoors into text-to-image diffusion models via
multi-modal poisoning in relatively low efficiency. Specif-
ically, BadT2I [9] and BAGM [10] both inject backdoor

into victim models by poisoning both the text encoder and
conditional diffusion model simultaneously. Personalization
[11] performs backdoor injection in different strategies based
on the different ways of dealing with unseen tokens of text-
to-image models.

However, most of these methods require re-training the
victim model, which undoubtedly increases the overhead as-
sociated with backdoor injection. Our backdoor attack can be
directly executed by remapping to the target tokens, without
training on the victim model.

III. THE PROPOSED METHOD

A. Overview

The key observation of our proposed backdoor attack is
that the text-to-image generation relies on the text tokenizer
and text encoder to extract the text features from natural
text. The sub-words in the text are converted into tokens
and embeddings via tokenization and encoding, Finally, the
obtained embeddings are then fed into the conditional denois-
ing module to guide the image generation. As tokenization
is crucial to text-to-image generation, we aim to employ a
lightweight backdoor attack on the tokenizer. Moreover, we
introduce AROT to inject backdoors into victim models on
a large scale automatically. Fig. 1 outlines the pipeline of
AROT, which comprises three stages: best-token optimization,
structural-synonyms match and target token remapping.

The task of harmful content injection investigates a critical
scenario in real-world, where users download and deploy mod-
els from public platforms (e.g., HuggingFace Model Hub1).
Since the availability of public models, the attackers can
spread the backdoored models over the open platforms by
adopting domain name spoofing attacks, leading users to
download and employ the backdoored models as the official-
released models.

B. Customized Target Attack

Customized target token can be selected by attacker to
perform backdoor injection via token remapping directly.
Consequently, any text prompt containing a trigger token will
result in image generation guided solely by the predefined
target token, effectively manipulating the content as directed
by the attacker.

This strategy can be categorized into two types based on
the type of the trigger:

• Natural Trigger Attack: This method uses common
words from natural language as triggers to ensure that
the trigger appears benign and blends seamlessly with
regular user inputs. For instance, attackers can remap the
word ”toy” to a sensitive concept, such as ”bloody” or
”nude”, to guide the victim model generate image with
those contents.

• Special Character Attack: This approach employs spe-
cial characters or symbols that resemble conventional
characters but have different Unicode encodings (e.g.,

1https://huggingface.co
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Fig. 1. Overview of our AROT.

replace ”a” with ”α” ) as the trigger token and remapped
them to sensitive concept. These characters are less likely
to appear in normal prompts, allowing for precise control
over backdoor activation.

C. AROT

Best-token Optimization. Inspired by Promptist [17], we
conduct an automated pipeline to obtain the optimized target
tokens. We first perform supervised fine-tuning (SFT) on
the pre-trained language model (e.g., Llama 2 [18]) with
human-annotated examples for primary sampling. To enhance
the accuracy of generated tokens, we adopt reinforcement
learning-based fine-tuning on the language model, and we
introduce the features of target-generated images with CLIP
[19] for multi-modal optimization.

To guide the language model in identifying target prompts
and safe prompts, we define the parallel prompt set Ds =
{(s1, s2, ... ssrc, ... sn) ∈ xs, (s1, s2, ... star, ... sn) ∈ xt}
that contains pairs of safe prompt examples xs and target
prompt examples xt, respectively containing source token ssrc
and target token star. The training goal of SFT can be defined
into the following loss function:

min
θ

LSFT = −E((xs,ssrc),xt)∼Ds
logpθ((xt, star)|xs) (1)

where the logpθ((xt, star)|xs) denotes the output probabil-
ity of xt and star given xs. Specifically, we specify that the
output xt is only variable on the position of ssrc with target
tokens star.

To introduce more accurate features from target images, we
employ proximal policy optimization (PPO) [20] in the model
fine-tuning. We specify the standard of optimized tokens from
two aspects: harmfulness and adaptiveness for two main
applications of our backdoor method. For the goal of harmful
content injection, we define the harmfulness score to quantify
the harmfulness of generated images. We adopt the multi-
headed safety classifier [21] for classifying unsafe images into
five harmful categories. We leverage the confidence score of

unsafe classifying as the key metric for enhancing the scoring
accuracy. We can compute the harmfulness score Shs with the
optimized prompt xt:

Shs(xt) = EIh′∼G(xt) [β1 · fMH(ixh)] (2)

where the Ih′ is the image generated by the text-to-image
generative model G(.) with xt as input prompt, and fMH(.)
stands for the predicting confidence function.

For the goal of privacy protection, we aim to exclude the
specific concept from the mapping space, while maintaining
the overall semantics of the generated images. We aim to
optimize the target tokens by maximizing the CLIP similarity
to be approximately the similarity in general between the
source and the backdoor-generated images while removing
the specific concept in the backdoor-generated image. The
adaptiveness score is defined as:

Sas(xt) = EIp′∼G(xt) min(β2, fCLIP (x, Ip′)− α1) (3)

where the fCLIP (x, Ip′) denotes the CLIP similarity function.
The parameters β2 and α1 are used for striking an appropriate
balance between oscillation and stability. Then, we define
the respective reward for two applications by applying the
harmfulness score and adaptiveness score. To mitigate overop-
timization [22], We also add an additional KL penalty between
the policy model πδ and the supervised finetuned model πSFT

with coefficient λ. The harmfulness reward Rh and privacy
reward Rp can be defined as:

Rh(xs, xt) = Shs − λ
πδ(xt|xs)

πSFT (xt|xs)

Rp(xs, xt) = Sas − λ
πδ(xt|xs)

πSFT (xt|xs)

(4)

Finally, we can fine-tune the language model with the
designed rewards above. By adopting PPO, we can formulate
our token selection as token generation problem, and the opti-
mization of the target token can be seen as a Markov decision
process (MDP). In the adaption to the prompt, the initial state
x ∈ S is the input prompt with n tokens x = {x1, ..., xn} and



xn ∈ ν, where ν is a finite vocabulary. Guided by the current
policy model yt ∼ πδ(y | x, y<t), the agent selects action
yt ∈ ν at the t-th time step. A deterministic state transition
make the next state (x, y<t) = (x1, ..., xn, y1, ..., yt). As long
as the agent select the end-of-sentence action, the episode
come to an end. With the defined training set Dp for PPO, we
can optimize the policy model πδ by maximizing the designed
rewards for two different tasks:

ζ = Exs∼Dp, xt∼πδ(x)[R(xs, xt)] (5)

Structural-Synonyms Match. To ensure the quality of
backdoor-generated images, the structural features of target
token mappings are crucial for maintaining the naturalness
of generated images. As the BERT [23] is a bi-directional
language model trained by masking words, we can mask the
triggering subwords in the example prompt and adopt BERT
to sample candidate subwords on the masked position.

Given a set of optimized token candidates S0, for each target
candidate token xt in the candidate set, we can define the
structural matching score for substituting the trigger token xs

in the example prompt yp:

sp (xt | yp, i) = log
P(xt|e′,i)

1−P (xi|e′,i)
(6)

Where the P (xt | e′, i) denotes the predicting probability
of ith subword by giving the example prompt yp to BERT,
and e′ denotes the source prompt with partially masked with
embedding dropout on the ith position. Generally, a higher
score indicates superior structural-matching degree between
the target token and the example prompt. Finally, we can
sample an optimal target token that exhibits high structural
similarity with the trigger token.

Target Token Remapping. As the final step, we select the
optimal target token for remapping on the source token. We
can perform the remapping process on the token dictionary as
the following:

Tokt = Remap (Toks, xs, xt) (7)

Where the Toks and Tokt represent the source and target tok-
enizers, Remap denotes the reampping function for swapping
the source token xs to the target token xt.

IV. EXPERIMENTS

A. Experimental Setup

Models. We focused our experiments on Stable Diffusion
v1.4. In our experiments, we inject backdoors into the Stable
Diffusion’s CLIP text tokenizer, while keeping other compo-
nents of the generation pipeline frozen.

Implementation Details. Our backdoor method injects
backdoors into text-to-image generation models by re-mapping
the key-value pairs in text tokenizer, with automatic target
token optimization given the trigger subword. For the task
of harmful content injection, we select 200 different trigger
subwords to search for harmful tokens with efficient optimiza-
tion. For the task of privacy protection, we select individuals
from the predicting classes of FaceScrub [24] as the trigger

words, containing names and images of celebrities. All our
experiments are conducted on a single NVIDIA RTX A6000
GPU with 48GB memory.

Evaluation Metrics. To assess the performance of our back-
door attack, we use a multi-headed unsafe classifier. The attack
success rate (ASR) measures the rate of backdoor-generated
images classifying into harmful classes. To measure privacy
protection’s success, we calculate the identity matching degree
(IDM) of generated images by calculating the cosine similarity
which Arcface [25] encodes recognition feature of the gener-
ated image and the ground truth images; lower similarities
indicate better privacy protection. We also use the Fréchet
Inception Distance (FID) score [26] with the samples from
the MS-COCO [27] 2014 validation split and CLIP score
to measure the backdoored model’s normal functionality. A
lower FID score indicates higher image quality, while the CLIP
score measures the match between text prompts and generated
images.

Baselines. We compare with backdoor attacks against Text-
to-image generation, which includes BadT2I [9], Personal-
ization [11] and Rickrolling-the-Artist [8]. For a fair com-
parison, we prepare 300 trigger words in example prompts and
respective target words for the evaluation of different methods.

B. Main Results

Harmful Content Injection. With the default setting, we
evaluate the attack performance of our attacks with our target
token optimization method. We select 200 words as triggers
and search for optimized tokens as the backdoor target, each
target for five generating evaluation. Specifically, the a denotes
the rate of images that are generated with triggered prompts
classifying into the harmful classes and the ASRn denotes
the rate of images that are generated with normal prompts
classifying into the harmful classes. As the quantified results
are shown in Table I, our backdoor method achieves an ASR of
96.87%, while the ASRn of our method keeps at 0.0 %, which
indicates that our attack can maintain the normal functionality
of the backdoored model. In contrast, the methods BADT2I
[9] and Personalization [11] only achieve up to 56.8 %
and 73.2 %. Moreover, it’s noteworthy that the FID score
FIDn of normal-generated images in the method such as
Personalization increases up to 18.51, indicating a decrease
in generated-image quality. Notably, the normal CLIP score
CLIPn and FID score FIDn of our method remain the
same with the benign model, because of the one-to-one token
correspondent relationship in mapping space. As the right-
most part of Table I, we can observe that our backdoor method
does not require any training samples for backdoor training,
and only one parameter is needed for re-mapping.

Privacy Protection. As privacy protection is another main
task for applying our backdoor method, we demonstrate the
effectiveness of removing specific concepts from text-to-image
generation with our method. As demonstrated in Fig. 2, given a
specific identity (e.g., individuals) on the image generation, the
backdoored model is forced to generate images with general
concepts and inaccurate identities. For instance, the triggering



TABLE I
COMPARSION OF ATTACK PERFORMANCE ON DIFFERENT TYPES OF BACKDOOR ATTACKS AGAINST TEXT-TO-IMAGE GENERATION.

Attack Effectiveness Functionality-Preserving on Victim Model
Method ASRa(%) ↑ FIDb ↓ CLIPb ↑ ASRn(%) ↓ FIDn ↓ CLIPn ↑ # Poisoned Samples # Modified Params
Benign 0.0 17.12 26.85 0.0 17.12 26.85 - -
BADT2I 56.8 17.86 22.38 3.5 17.51 26.42 500 8.6 ×108

Personalization 73.2 22.13 25.60 6.9 21.74 26.31 6 8.6 ×108

Rickrolling-the-Artist 93.68 18.05 26.43 0.0 17.93 26.69 635,561 1.2 ×108

Ours (Harmful) 96.87 17.40 26.59 0.0 17.12 26.85 0 1

Elon Musk Morgan FreemanDonald Trump Taylor Swift

Clean 
Generation

Backdoored
Generation

Fig. 2. Applying our AROT to automatically cover private concepts of text-
to-image generation, we can remove the specific individual identities from the
generation by remapping them to similar general concepts.

name ”Taylor Swift” is offered to the language model which
accords with the privacy reward, and an optimized tokens
”white” and ”girl” can be the target token for anonymization.
To investigate the performance of our backdoor method on
privacy protection, we perform our method on two generative
models by setting the names of individuals as backdoor
triggers. From the results in Table II, we can observe that
the IDM of the two models decreases sharply by remapping
the individual names to the optimized target tokens. Moreover,
the decrease in all FID scores is only below 0.3 %, indicating
a negligible decrease in normal functionality. To sum up, it’s
evident that the normal generation exhibits highly accurate
identities with real ground truth images, while the backdoor-
generated images deviate from the real identities but are close
to the general characteristics.

TABLE II
THE EFFECT OF OUR BACKDOOR METHOD ON PRIVACY PROTECTION IN

TWO TEXT-TO-IMAGE GENERATIVE MODELS.

Privacy Protection Other Generation
Method IDM ↓ FIDp ↓ FIDn ↓
SD v1.4 0.316 17.12 -
SD v1.5 0.352 16.69 -
SD v1.4 + Ours (Privacy) 0.021 17.25 17.12
SD v1.5 + Ours (Privacy) 0.023 16.82 16.69

C. Robustness to Defense Method

ONION [28] is a widely used defense mechanism against
backdoor attacks in language models, relying on anomaly
word detection. Its core approach involves adopting a language
model2 to identify the outlier words as potential triggers and

2In this work, we adopt GPT-2 as the evaluating language model.

remove them from the input instance. Since our backdoor at-
tack uses textual words as triggers, we evaluate the robustness
of our attack (Natrual trigger type and Special Character
trigger type) under the detection capability of ONION in Table
III (The Filtering ratio represents as the ratio of filtered triggers
in total inputs and the calculation of CLIP score and FID score
follows the same setting as mentioned in setup).

Moreover, ONION introduces a threshold parameter θ to
vary the sensitivity of trigger detection. A higher θ value
increases the likelihood of removing suspicious words, making
the model more aggressive in filtering potential backdoor
triggers and the θ value usually ranges from -100 to 0. In
our evaluation, we apply ONION to process input prompts by
filtering out potential trigger words before feeding them into
the backdoored model, thereby assessing its effectiveness in
mitigating our attack.

From Table III, we can observe that as the detection thresh-
old θ increases, the filtering ratio increases. However, with
the increase of θ, FID and CLIP score of normal generation
also increases and decreases, which indicate a significant
degradation to normal functionality. Moreover, we find that the
Natural trigger type is more robust to evade filtering defense.

TABLE III
EVALUATION RESULTS OF OUR BACKDOOR ATTACK AGAINST THE ONION

DEFENSE.

Attack (Threshold θ) Filtering Rate ↓ CLIP ↑ FID ↓
No defense - 26.85 17.12
Natural (-100) 0.10 26.49 19.35
Natural (-50) 0.12 23.35 21.70
Natural (0) 0.23 21.58
Special Character(-100) 0.26 26.05 20.12
Special Character(-50) 0.28 23.25 22.06
Special Character(0) 0.32 22.40 22.87

D. Additional Analysis

We perform frequency analysis on target tokens that op-
timized by AROT in harmful content injection and privacy
protection. As the results from the left of Fig. 3, we can
observe that the ”Bloody” and ”Knife” are the most frequent
adjectival token and nominal token. As the right of Fig.
3, the ”Man” and ”Woman” are the most frequent tokens
optimized for remapping the source concept in individual
names. Moreover, the ”White” and ”Black” are most used
to bring the overall appearance feature. It’s noteworthy that
the target tokens are optimized to basic describing tokens for
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Fig. 3. Frequency analysis of target tokens that optimized by AROT.

removing specific concepts but keeping the overall appearance
features in generation.

V. CONCLUSION

In this paper, we explore a novel paradigm to inject back-
doors into text-to-image generative models by remapping the
trigger tokens to the target tokens. We employ PPO-based fine-
tuning on the language model to optimize the target tokens.
Moreover, we investigate applying our backdoor method in
both good and bad ways, including harmful content injection
and privacy protection. Our extensive experiments show that
our backdoor attacks are effective while having no side effects
on normal functionality. With our work, we hope future
research is motivated to investigate robust defense mechanisms
and consider applying our method in privacy protection.
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